西南财经大学主页

当前位置:首页 > 西南财经大学 > 新闻公告 >

南京大学 杨念:Explicit Approximations for Diffusion Processes and Financial Applications

2019-10-21 0 新闻公告 来源:西南财经大学新闻网

光华讲坛——社会名流与企业家论坛第 5551 期

 

主题:Explicit Approximations for Diffusion Processes and Financial Applications

主讲人:南京大学 杨念助理教授

主持人:统计学院  陈坤副教授

时间:2019年10月23日(星期三)上午10:30-11:30

地点:西南财经大学柳林校区通博楼B212

主办单位:统计学院 科研处

 

主讲人简介:

杨念现任南京大学商学院金融与保险学系助理教授,香港中文大学系统工程与工程管理学系哲学(金融工程)博士学位。他的研究兴趣主要集中的金融衍生品市场、金融计量、金融合约理论等领域,其相关研究成果发表在Journal of Econometrics, Journal of Economic Dynamics and Control, Quantitative Finance等杂志。

主要内容:

Diffusion processes are widely used in finance such as asset pricing, derivative pricing, and term structure modeling. The use of diffusion processes in practice requires analytical tractability of these models. The explicit formula of the transition density of a diffusion process, which is in general not available, lies at the heart of the analytical tractability. In this talk, I will present two new methods, which can yield explicit approximations for transition densities of multivariate diffusions: (i) the Ito-Taylor (delta) expansion, in which the explicit density approximation is obtained via the Ito-Taylor expansion of the conditional expectation of the Dirac delta function; (ii) the Hermite expansion, the explicit density approximation of which is derived by extending the Hermite method of Ait-Sahalia (2002) to irreducible diffusions. Then I will also discuss the relationship among various expansion methods for transition densities of multivariate diffusion processes. Finally, I will present two important applications.  The obtained density approximations are used to (i) carry out the maximum likelihood estimation for the diffusions with discretely observed data; (ii) derive explicit expansion formulas for European option prices under irreducible diffusions. Extensive numerical experiments are also presented to demonstrate the accuracy and effectiveness of two approaches.

扩散过程广泛用于金融领域,例如资产定价,衍生产品定价和期限结构建模。在实践中使用扩散过程需要这些模型的解析可解性。扩散过程转移密度的显式公式(通常无法获得)是解析可解性的核心。在本次演讲中,我将介绍两种新方法,它们可以得出多元扩散过程的转移密度的显式渐近公式:(i)Ito-Taylor(delta)展开,其中通过Ito-Taylor展开Dirac delta函数的条件期望来获得显式渐近密度; (ii)Hermite展开,其显式渐近密度是通过将Ait-Sahalia(2002)的Hermite方法扩展到不可约扩散过程而得出的。其后,将讨论多元扩散过程的转移密度的各种展开方法之间的关系。最后,将介绍两个重要的应用,即将所获得的渐近密度用于(i)对具有离散观测数据的扩散过程进行最大似然估计; (ii)得出在不可约的扩散过程下欧洲期权价格的显式展开公式。所进行的广泛数值实验说明了两种方法的准确性和有效性。

 


未经允许不得转载:大学门户 » 南京大学 杨念:Explicit Approximations for Diffusion Processes and Financial Applications

相关推荐

标签